ISG56 is a negative-feedback regulator of virus-triggered signaling and cellular antiviral response.
نویسندگان
چکیده
IFN-stimulated gene 56 (ISG56) is one of the first identified proteins induced by viruses and type I IFNs. In this study, we identified ISG56 as a virus-induced protein associated with MITA, an adapter protein involved in virus-triggered induction of type I IFNs. Overexpression of ISG56 inhibited Sendai virus-triggered activation of IRF3, NF-kappaB, and the IFN-beta promoter, whereas knockdown of ISG56 had opposite effects. Consistently, overexpression of ISG56 reversed cytoplasmic poly(I:C)-induced inhibition of vesicular stomatitis virus (VSV) replication, whereas knockdown of ISG56 inhibited VSV replication. Competitive coimmunoprecipitation experiments indicated that ISG56 disrupted the interactions between MITA and VISA or TBK1, two components in the virus-triggered IFN signaling pathways. These results suggest that ISG56 is a mediator of negative-feedback regulation of virus-triggered induction of type I IFNs and cellular antiviral responses.
منابع مشابه
MicroRNA profiling of Sendai virus-infected A549 cells identifies miR-203 as an interferon-inducible regulator of IFIT1/ISG56.
The mammalian type I interferon (IFN) response is a primary barrier for virus infection and is essential for complete innate and adaptive immunity. Both IFN production and IFN-mediated antiviral signaling are the result of differential cellular gene expression, a process that is tightly controlled at transcriptional and translational levels. To determine the potential for microRNA (miRNA)-media...
متن کاملGuanylate binding protein 4 negatively regulates virus-induced type I IFN and antiviral response by targeting IFN regulatory factor 7.
IRF7 is known as the master regulator in virus-triggered induction of type I IFNs (IFN-I). In this study, we identify GBP4 virus-induced protein interacting with IRF7 as a negative regulator for IFN-I response. Overexpression of GBP4 inhibits virus-triggered activation of IRF7-dependent signaling, but has no effect on NF-κB signaling, whereas the knockdown of GBP4 has opposite effects. Furtherm...
متن کاملSmurf2 negatively modulates RIG-I-dependent antiviral response by targeting VISA/MAVS for ubiquitination and degradation.
VISA (also known as MAVS, Cardif, IPS-1) is the essential adaptor protein for virus-induced activation of IFN regulatory factors 3 and 7 and production of type I IFNs. Understanding the regulatory mechanisms for VISA will provide detailed insights into the positive or negative regulation of innate immune responses. In this study, we identified Smad ubiquitin regulatory factor (Smurf) 2, one of ...
متن کاملDYRK2 Negatively Regulates Type I Interferon Induction by Promoting TBK1 Degradation via Ser527 Phosphorylation
Viral infection activates the transcription factors NF-κB and IRF3, which contribute to the induction of type I interferons (IFNs) and cellular antiviral responses. Protein kinases play a critical role in various signaling pathways by phosphorylating their substrates. Here, we identified dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 2 (DYRK2) as a negative regulator of virus-tr...
متن کاملتغییرات ژنتیکی ویروس و فرار از سامانه ایمنی، چالشهای پیشرو علیه آنفلوآنزا: مقاله مروری
The spread of influenza viruses in multiple bird and mammalian species is a worldwide serious threat to human and animal populations' health and raise major concern for ongoing pandemic in humans. Direct transmission of the avian viruses which have sialic acid specific receptors similar to human influenza viruses are a warning to the emergence of a new mutant strain that is likely to share mole...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 106 19 شماره
صفحات -
تاریخ انتشار 2009